Identification of regulatory elements using a feature selection method
نویسندگان
چکیده
منابع مشابه
Identification of regulatory elements using a feature selection method
MOTIVATION Many methods have been described to identify regulatory motifs in the transcription control regions of genes that exhibit similar patterns of gene expression across a variety of experimental conditions. Here we focus on a single experimental condition, and utilize gene expression data to identify sequence motifs associated with genes that are activated under this experimental conditi...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملIdentification of apolipoprotein using feature selection technique
Apolipoprotein is a kind of protein which can transport the lipids through the lymphatic and circulatory systems. The abnormal expression level of apolipoprotein always causes angiocardiopathy. Thus, correct recognition of apolipoprotein from proteomic data is very crucial to the comprehension of cardiovascular system and drug design. This study is to develop a computational model to predict ap...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Pneumonia identification using statistical feature selection
OBJECTIVE This paper describes a natural language processing system for the task of pneumonia identification. Based on the information extracted from the narrative reports associated with a patient, the task is to identify whether or not the patient is positive for pneumonia. DESIGN A binary classifier was employed to identify pneumonia from a dataset of multiple types of clinical notes creat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2002
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/18.9.1167